R & D Center
Atomic Nano-Materials and Equipments Co.,Ltd
current position:
Homepage
/
Technology Overview

Technology Overview

ALD technology Introduction

Atomic layer deposition (ALD) is a continuous thin film deposition technology based on vapor phase chemical processes.  Most ALD reactions use two chemicals called precursors (also known as "reactants ").  These precursors react sequentially with the material surface in a self-limiting manner.  Targeting at the typical demand of market, ANAME provides comprehensive and mature ALD solution for relevant industrial partners.  ALD is a chemical vapor deposition technique that was originally used to produce nanoscale insulating Al2O3 and zinc sulfide as a thin-film electroluminescent display (TFEL) material.  ALD has the advantages of high precision, pinhole-free and high conformity nano-film deposition on various sizes and shapes of the substrate, therefore, it plays an indispensable role in the process of industrial production.  

Process and film properties

Process and film properties

这是描述信息

Excellent adhesion

Chemical adsorption of the precursor onto the base material ensures excellent adhesion.

这是描述信息

Saturated adsorption characteristics

The self-limiting nature of the surface reaction makes it possible to automate the process without the need for precise dose control and continuous operator intervention.

这是描述信息

Ordered reaction

The ordered growth of the film provides extremely high film accuracy without in-situ feedback or operator intervention.

这是描述信息

Surface controlled reaction

The surface reaction ensures the high conformity of the film under any condition, whether the substrate material is dense, porous, tubular, powdery or with other complex shapes.

这是描述信息

Accuracy and repeatability

Per-cycle film thickness is determined by the process, but is usually 1A(0.1 nm).

这是描述信息

Ultra-thin, dense and flat

ALD can deposit films less than 1 nm-thick.  In some industrial applications, the film thickness is only 0.8 nm.

这是描述信息

High productivity

Surface controlled growth characteristics make it possible to expand productivity by increasing batch size and substrate area.

这是描述信息

Plasma-enhanced ALD

Films of some metals, low temperature oxides and nitrides can be prepared by using plasma during atomic layer deposition. 

这是描述信息

Roll-to-roll and continuous ALD

Roll-to-roll film deposition opens the door to many entirely new applications, such as the flexible electronics industry.  

这是描述信息

ALD for particles and powders

Combining conform coatings with granulated substrates creates a number of novel applications, such as altering the diffusion properties of battery materials.  

Process and film properties
ALD film material

ALD film material 

The most common materials that can be deposited by atomic layers include (selected) : 

Oxides: Al2O3, HfO2, SiO2, CaO, CuO, Er2O3, Ga2O3, La2O3, MgO, Nb2O5, Sc2O3, Ta2O5, TiO2, VXOY, Y2O3, Yb2O3, ZnO, ZrO2, etc.  

Nitride: AlN, GaN, TaNX, TiAlN, TiNX, etc.  

Carbides: TaC, TiC, etc. 

Metals: Ir, Pd, Pt, Ru, etc.  Sulfides: ZnS, SrS, etc.  Fluoride: CaF2, LaF3, MgF2, SrF2, etc.  Biomaterial: Ca10(PO4)6(OH)2(Hydroxyapatite)  Polymer: PMDA - DAH, PMDA - ODA, etc.  Doped nano-coatings and composite structures: ALD can realize a large number of different material combinations.  

The application of ALD  

这是描述信息

Power device  ALD plays important roles in power devices.  Among them, the film deposited by ALD process has controllable thickness, excellent replacement coverage. A number of high- breakdown voltage materials and devices include:   GaN, SiC, traditional IGBT and other thin film materials, which involve the deposition of high-k dielectric film, including the deposition of gate insulation layer with low interface state.  GaN  GaN is widely used in chargers because of its high thermal conductivity and wide band gap, which can be adapted to small transformers and high power devices to achieve high efficiency charging effect.  GaN films with controllable thickness can be deposited without damage by ALD method, so as to achieve the advantages of high efficiency in devices. 

The application of ALD  
The application of ALD  
这是描述信息

Radio Frequency Device (RF)  

MOS and RFFE semiconductor devices using Group III-V materials in the periodic table requires metal oxide to realize a controllable layer of passivation. ALD process can be used to control the thickness of such surface passivation layer, and deposit high-dielectric-constant material stack to control the interface quality.

这是描述信息

Ferroelectric storage

Ferroelectric material is a kind of material which has spontaneous polarization and this polarization can change under the action of external electric field.  Therefore, ultra-thin ferroelectrics are of great significance for high density electronic devices, especially for FET and non-volatile memory. The existence of inversion symmetry failure and switchable electrical polarization in ultra-thin ferroelectric materials grown by low-temperature ALD was determined by the generation of second harmonics and advanced scanning probe technology, respectively. The efficiency and application range of ferroelectric storage are greatly improved.  

The application of ALD  
搜索
Search